SHRIMP U-Pb zircon ages from Trans–Himalayan Ladakh Batholith and its exhumation using fission track zircon–apatite ages

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

U-Pb ages of angrites

The chemistry and isotope chemistry of natural materials is highly indicative of provenance and process throughout geological history. Our studies range in time from the earliest solar system through to processes that are actively taking place today, and in scope from planetary systems to individual molecules. Active areas of research centre on planetary studies, metamorphic and igneous geochem...

متن کامل

Patterns of Late Cenozoic exhumation deduced from apatite and zircon U-He ages from Fiordland, New Zealand

[1] New apatite and zircon (U-Th)/He ages from the Fiordland region of New Zealand’s South Island expand on earlier results and provide new constraints on patterns of Late Cenozoic exhumation and cooling across this region. Zircon (U-Th)/He cooling ages, in combination with increased density of apatite ages, show that in addition to a gradual northward decrease in cooling ages that was seen dur...

متن کامل

U-pb Ages of Lunar Apatites

Introduction: Apatite is one of the minerals that is rarely utilized in U-Pb geochronology, compared to some other U-rich accessory phases. Relatively low U concentration, commonly high proportion of common Pb and low closure temperature of U-Pb system of apatite inhibit its application as geochronological tool when other minerals such as zircon are widely available. However, zircon appear to b...

متن کامل

U–Pb zircon ages as a sediment mixing tracer in the Nepal Himalaya

This paper presents a new approach to quantify sediment mixing based on the mixing of U–Pb zircon age distributions within sediment. Two statistical techniques are presented to determine the proportion in which two known age distributions combine to create a known mixed age distribution. These techniques are then used to determine relative erosion rates between adjacent drainage basins above an...

متن کامل

U=Pb zircon ages constrain the architecture of the ultrahigh-pressure Qinling–Dabie Orogen, China

New SHRIMP and TIMS zircon ages, Ar=Ar ages, and eclogite locations contribute significantly to our understanding of the ultrahigh-pressure Dabie Shan. (1) The geographic extent of the Yangtze craton that was subducted to ultrahigh pressure extends to the northern edge of the Dabie Shan. (2) The northern half of the Dabie Shan is a magmatic complex, intruded over a 10-Myr interval between 137 a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Himalayan Journal of Sciences

سال: 2008

ISSN: 1727-5229,1727-5210

DOI: 10.3126/hjs.v2i4.855